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Abstract

We propose to combine the lattice Boltzmann equation (LBE) and the front-tracking (FT) method to simulate inter-
facial dynamics with surface tension in two dimensions (2D). In the proposed LBE-FT method, the flow is modeled by
the LBE on a fixed Cartesian mesh, whereas interfaces are explicitly tracked by a set of markers that are advected by
the flow. The interface curvature is computed from adjacent markers and is then used to determine surface tension accord-
ing to Laplace’s law. The local capillary forces evaluated at the markers are distributed to nearby Eulerian grid points
according to a ‘‘smearing’’ function to approximate the Dirac delta function due to Peskin. To validate the proposed
LBE-FT method, we simulate (1) a circular bubble in a flow either quiescent or moving with a constant velocity and
(2) the decaying capillary waves at the interface of two fluids of equal viscosities and densities. For the circular bubble,
the spurious current measured in the LBE-FT is weaker than that observed in the standard volume of fluid method
and some existing LBE models. For the capillary waves, the numerical results of the period T (or frequency x), the atten-
uation rate c, the surface tension r and the root-mean-square error of the wave amplitude agree well with the normal-mode
and Prosperetti’s solutions. The proposed LBE-FT method is shown to have a second-order rate of convergence. We also
show that the LBE-FT method is superior to the existing lattice BGK diffusive interface method in terms of accuracy of
interface representation, numerical stability and computational efficiency.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the recent decade there has been significant development in numerical methods for modeling and simu-
lation of interface dynamics (cf. [1]). In particular, the front-tracking technique has emerged as a superior
method [2–8]. Systematic comparisons show that front-tracking (FT) method is superior to particle methods,
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PLIC-VOF, level sets and capturing, in that order [8,9]. The front-tracking method uses a set of discrete mar-
ker points connected to each other to form a piecewise linear (in 2D) or a triangular (in 3D) description of the
interface. The marker points (or markers) are completely independent of the grid system upon which flow
fields are computed, and are evolved in a Lagrangian manner.

In this paper we propose to combine the lattice Boltzmann equation (LBE) [10–12], an Eulerian method
with a fixed Cartesian mesh, and the front-tracking method, a Lagrangian method with a set of marker points
precisely representing interface positions, to model the interfacial dynamics with surface tension in two dimen-
sions (2D). We note that there already existed other hybrid methods which couple the front-tracking technique
with various CFD methods (e.g. [13,14]). Most existing LBE models for interface dynamics are diffusive inter-
face capturing methods, which employ various ‘‘interactions’’ to produce interfaces with a thickness of a few
lattice spacings [15,16]. In contrast, in the LBE front-tracking method proposed in this work, the coupling
between the flow and markers is through the localized forces proportional to the interfacial curvature. In par-
ticular, the proposed LBE-FT method uses the immersed boundary method (IBM) due to Peskin [17,18] to
treat the interface between two fluids. In IBM, the fluid variables are Eulerian ones discretized on a fixed
Cartesian mesh, while the interfacial and other boundary conditions are carried by Lagrangian variables.
The two types of variables are coupled by interaction equations involving a smoothed approximation
of the Dirac delta function. The Eulerian-Lagrangian identities govern the transfer of data from one mesh
to the other. Previously the IBM has been used in the LBE to treat fluid–solid interfaces [19].

As we will show in details later, the proposed LBE front-tracking method has several attractive features
when compared to the existing multiphase LBE diffusive interface capturing method. First of all, the interfa-
cial position is precisely defined by a set of markers, as opposed to by arbitrary contours of some continuous
function. The precise interface representation is particularly useful to define initial conditions in the LBE sim-
ulations. Second, the LBE-FT method improves the numerical stability because of the multiple-relaxation-
time collision model [20–23]. And third, the LBE-FT method enhances the computational efficiency. We
would like to note that the LBE-FT method achieves these improvements while maintaining the algorithmic
simplicity of the LBE method. The proposed LBE-FT method also shows the feasibility of incorporating
sophisticated numerical techniques, such as the multigrid method, into the LBE method. These features of
the proposed LBE-FT method will be demonstrated through numerical simulations.

The remainder of this paper is organized as follows. Section 2 provides a brief discussion of the LBE
method and the front-tracking techniques, including dynamics of markers, determination of curvature and
approximation made to distribute localized surface-tension forces to the fluid. Section 3 presents numerical
results for two test cases in two dimensions: (a) a single bubble in a flow either quiescent or moving with a
constant velocity and (b) the decaying capillary waves at the interface between two fluids of equal viscosities
and densities. We also provide a comparison between the proposed LBE-FT method and an existing multi-
phase lattice BGK diffusive interface capturing method. Section 4 concludes the paper.

2. Numerical methods

In this section we will provide concise descriptions of the lattice Boltzmann equation with multiple-relax-
ation-time collision model [20–23] and the front-tracking method [17,18]. More detailed treatments of these
methods can be found in pertinent literature.

2.1. Lattice Boltzmann equation

The lattice Boltzmann equation (LBE) is a simple explicit algorithm associated with a square or cubic lat-
tice on which fictitious particles move synchronously from one grid point to one of its neighbors according to
their (discrete) velocities. In the two dimensional (2D) case considered here, we will use the nine-velocity model
on a square lattice (the D2Q9 model). On each grid point rj of the model, there are nine real numbers
ffiji ¼ 0; 1; . . . ; 8g representing the single-particle (mass) density distribution functions corresponding to the
nine discrete particle velocities fciji ¼ 0; 1; . . . ; 8g. The discrete velocity set fcig is depicted in Fig. 1. In the
LBE method, the grid size dx, which is also the lattice constant of the square lattice, and the time step dt

are chosen in such a way that ‘‘particles’’ advect in one time step from one grid point to an adjacent one



–

–

Fig. 1. Illustration of nine-velocity discretization in two dimensions resulting in exact advection to all immediate neighboring grid points
on a regular Cartesian grid lattice with coordinates ði; jÞ.
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according to their velocities, as illustrated in Fig. 1. The evolution equation for the distribution functions {fi}
can be written as follows:
fðrj þ cdt; tn þ dtÞ ¼ fðrj; tnÞ þX½fðrj; tnÞ;Fðrj; tnÞ�; ð1Þ

where X represents the collision operator in the presence of a space-dependent body force F and the bold-font
symbols denote Q-tuple vectors, with Q being the number of the discrete velocities
fðrj þ cdt; tn þ dtÞ ¼ ðf0ðrj; tn þ dtÞ; . . . ; f8ðrj þ c8dt; tn þ dtÞÞT;
fðrj; tnÞ ¼ ðf0ðrj; tnÞ; f1ðrj; tnÞ; . . . ; f8ðrj; tnÞÞT;
X ¼ ðX0ðrj; tnÞ;X1ðrj; tnÞ; . . . ;X8ðrj; tnÞÞT;
where T denotes the transpose operator.
The collision operator in the LBE method is modeled by the linear relaxation process, which is carried out

in the moment space [20]
X ¼ �M�1 � S � ½m�mðeqÞ�; ð2Þ

where m and mðeqÞ are moments and their equilibria, respectively, S is a positive-definite diagonal matrix of
relaxation rates fsiji ¼ 1; 2; . . . ; 9g
S ¼ diagðs1; s2; . . . ; s9Þ;

and M is the transformation matrix mapping the distribution functions to their moments
m ¼ M � f; f ¼ M�1 �m:

The equilibria of the moments are given by
mðeqÞ
1 ¼ dq; mðeqÞ

2 ¼ �2dqþ 3j � j; mðeqÞ
3 ¼ dq� 3j � j; ð3aÞ

mðeqÞ
4 ¼ jx; mðeqÞ

5 ¼ �jx; mðeqÞ
6 ¼ jy ; mðeqÞ

7 ¼ �jy ; ð3bÞ
mðeqÞ

8 ¼ j2
x � j2

y ; mðeqÞ
9 ¼ jxjy ; ð3cÞ
where dq is the density fluctuation, and j ¼ ðjx; jyÞ is the flow momentum, and they are the conserved moments
of the distribution functions
dq ¼
X

i

fi; j ¼
X

i

cifi ¼ q0u: ð4Þ
The total density is q ¼ q0 þ dq, and the mean density q0 is set to unity. Here we also use the incompressible
approximation so that j � q0u ¼ u [21,24], with q0 ¼ 1.

In the presence of a body force F, the above collision operator is modified to include the acceleration of the
fluid due to the body force F. In practice [23,25,26], the LBE algorithm is decomposed in the following steps:
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� Compute moments m ¼ M � f;
� Compute j0 ¼ j þ Fdt=2, j 0 is used to advect the markers and as the output of the flow momentum;
� Use j 0 to compute the equilibria of Eqs. (3), then relax the non-conserved moments;
� Compute j00 ¼ j0 þ Fdt=2;
� Compute the post-collision distribution f* with j00as the momentum;
� Advect f*.

The lattice Boltzmann equation approximates the incompressible Navier–Stokes equation with second-order
spatial accuracy (e.g. [27]). The kinematic and bulk viscosities of the model are
m ¼ 1

3

1

s8

� 1

2

� �
cdx; f ¼ 1

6

1

s2

� 1

2

� �
cdx; c ¼ dx

dt
: ð5Þ
The speed of sound in the model is
cs ¼
1ffiffiffi
3
p c: ð6Þ
The LBE method with the polynomial equilibria for the non-conserved moments is only valid in the near
incompressible limit, i.e., the Mach number Ma ¼ U=cs � 1. In practice, Ma < 0:3. Further details of the
MRT LBE can be found in, for example, [20–23].

2.2. Front-tracking technique

We will use front-tracking technique to track fluid–fluid interfaces. Again, we shall restrict ourselves in 2D
here. Suppose an interface between fluids I and II is represented by a curve, which is discretized into a number
of points (markers) with coordinates fxkjk ¼ 1; 2; . . . ;Ng, as illustrated in Fig. 2. These marker points are
connected to one another to form a piecewise linear description of the interface in 2D. This can be generalized
to 3D where the markers points are connected to form a triangulation of the interface. The Lagrangian
dynamics of the markers due to advection by the fluid flow is carried out as follows. At each iteration of
the algorithm, the LBE method determines the velocity field u and the pressure field p at the grid points
frjg on the fixed Cartesian mesh dxZ

d . The velocity u at each marker point can be obtained by interpolations
involving nearby grid points, and the markers are advected according to the explicit forward Eulerian
advection
xkðtn þ dtÞ ¼ xkðtnÞ þ uðxk; tnÞdt: ð7Þ

After this Lagrangian step for the markers, markers may be added or deleted to maintain the distance between
two adjacent markers ‘kl ¼ jxk � xlj in a reasonable length ‘0 in terms of the grid spacing dx. Typically in our
numerical computations, if ‘kl > 1:1‘0, a new marker is added between xk and xl, whereas if ‘kl < 0:5‘0, either
xk or xl is to be eliminated. This is easy to carry out unless topological changes of the interface occur. Note
that the simple Eulerian dynamics in Eq. (7) could easily be modified to improve accuracy in time or to include
A

B C

Fluid I 

Fluid II

f̂BA

fB

f̂BC

Fig. 2. Illustration of interface (the curve) and markers (dots) and the square grid for D2Q9 model.
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other properties of the interface, such as interface rigidity, interface viscosity or interaction of the interface
with external fields.

The local curvature is a relevant quantity for modeling of the surface tension r. The curvature C ¼ 1=R at
point B is proportional to jf Bj ¼ jf̂ BA þ f̂ BCj weighted by the mean distance �‘B ¼ 1

2
ð‘BA þ ‘BCÞ, where f̂ BA and

f̂ BC are unit vectors along BA and BC, respectively, as illustrated in Fig. 2. Thus, the local body force due to
the surface tension r at point B is given by
f ðrBÞ ¼ r�‘Bf B; f B ¼ f̂ BA þ f̂ BC: ð8Þ

Because the markers usually do not reside on grid points, the forces computed at the marker positions must be
distributed to the nearby grid points somehow. Here a scheme proposed by Peskin [17] is used to distribute the
capillary forces. For instance, at the point xB ¼ ðxB; yBÞ, the weight to distribute force f ðxBÞ, to a nearby grid
point rj ¼ ðxj; yjÞ is given by W ðrjÞ ¼ wðxj; iBÞwðyj; jBÞ and
wðxj; iBÞ ¼
1

2n f1þ cos½ðxj=dx � iBÞp=n�g; jxj=dx � iBj 6 n;

0; jxj=dx � iBj > n;

(
ð9Þ
where iB and jB are integers closest to xB=dx and yB=dx, respectively. That is, the force f ðrBÞ evaluated at the
marker point B with coordinates xB ¼ ðxB; yBÞ is distributed to ð2nþ 1Þ2 neighboring grid points within the
square of side 2n centered at the point x0B ¼ ðiB; jBÞdx with the weight W depending on the distance
jrj � x0Bj according to Eq. (9). The ‘‘smearing’’ function wðxj; iBÞ used here is an approximation of what
was proposed by Peskin [17]. The effect of the ‘‘smearing’’ range n will be tested in the simulations.

The velocity field u must be evaluated at marker points fxkg from their surrounding Eulerian grid points
frjg by interpolations. One choice is to use Eq. (9) for the force distribution. We can also use a bi-linear inter-
polation to compute uðxkÞ from four nearby grid points or a polynomial stencil based on the nine points of the
D2Q9 model (cf. Appendix C in [23]). These interpolations will also be tested in our simulations.

Since an interface is a ðd � 1Þ dimensional object in a d dimensional space, the interface-tracking compu-
tation would involve a minor fraction of total grid points when the interfacial geometry is not too compli-
cated. In contrast, the interaction force in the multiphase LBE diffusive interface capturing method must
be evaluated throughout the entire computational domain. Therefore, the LBE-FT method can be more com-
putationally efficient than the multiphase LBE diffusive interface capturing method. However, a major draw-
back of the front-tracking method is its difficulty to handle topological changes of interfacial geometry
without artificial intervention. It should also be pointed out that, while the LBE-FT method conserves mass
globally, it does not conserve mass locally in the interfacial regions where interpolations are applied.

3. Results and discussions

We use the front-tracking LBE method to simulate two simple test cases: (1) a single circular bubble in a
flow either quiescent or moving with a constant velocity; and (2) the decay of oscillating capillary wave at the
interface between two viscous fluids of equal viscosities and densities. We also compare the proposed LBE-FT
method with the existing multiphase LBE diffusive interface capturing method. In what follows we use the
units of dx ¼ dt ¼ 1 for the sake of convenience. All the quantities, such as the surface tension r and the vis-
cosity m are given in the ‘‘lattice units’’.

3.1. A circular bubble

For a circular bubble in a quiescent flow, with a given value of the surface tension r, the pressure difference
across the interfacial boundary defined by the circle of radius R satisfies Laplace’s law
Dp ¼ ðp2 � p1Þ ¼ rC ¼ c2
s Dq; c2

s ¼
1

3
; ð10Þ
where C ¼ 1=R is the curvature, p2 ¼ c2
s q2 and p1 ¼ c2

s q1 are the pressures within and without the bubble,
Dq ¼ ðq2 � q1Þ is the density difference across the interface and the ideal gas equation of state for the LBE
model has been used.
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Using a square mesh of size Nx � Ny with periodic boundary conditions in both directions, we initialize the
system as follows. A circle of radius R is centered at rc ¼ ðxc; ycÞ, and there are N marker points evenly dis-
tributed on the circumference of the interfacial boundary. The fluid densities inside and outside of the circle
are q2 ¼ 1þ Dq and q1 ¼ 1, respectively. After a number of initial iterations, the density equilibrates to a
smoothly varying profile across the interface. The thickness of the profile depends on the number of points
n used to distribute the capillary force from a marker point xk to its neighboring grid points frjg: the more
points, the thicker the interface.

We first measure the normalized pressure along the radial direction r
Fig. 3.
vertica
iteratio
�pðrÞ ¼ pðrÞ � p1

p2 � p1

¼ pðrÞ � p1

Dp
2 ½0; 1�:
Initially the radius of the bubble is R0 ¼ 15:2 and the number of markers is N = 120. The stencil over which the
capillary force is distributed has ð2nþ 1Þ2 grid points, with n = 2 or 3. The system size is Nx � Ny ¼ 121� 121.
The viscosity m ¼ 0:001 and the surface tension r ¼ 0:022. The Ohnesorge number Oh ¼ m=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qrR0

p
is 1/818,

where q ¼ q1 ¼ 1. The interface profile stabilizes after an initial period of time. The measurement is made after
1000 iterations. As shown in Fig. 3, a larger n leads to a thicker interface. We note that radius of the bubble
changes very little in time. For the particular case of Fig. 3, R � 0:9999R0 after 1000 iterations, and it is inde-
pendent of n (we used n = 2 and 3 in the test). This shows that the LBE-FT method is remarkably isotropic in
spite of the underlying square mesh. We also note that in the LBE front-tracking simulations, the pressures
within and without of the interface, p2 and p1, steadily maintain their specified initial values, while this is
not possible in the LBE diffusive interface capturing schemes. In the LBE capturing schemes with either inter-
action (e.g. [15]) or free energy (e.g. [16]), the pressures inside and outside of the bubble are difficult to be ini-
tialized accurately thus they are constantly changing [28,29]. A comparison of the LBE-FT method and a
multiphase LBGK diffusive interface method will be given in Section 3.3.

We further investigate the variations of the radius R and the area A ¼ 2pR of the bubble in time. The radius
R is measured from the circumference L ¼ 2pR ¼

P
k‘kkþ1 defined by the marker points fxkg. We find that,

while the bubble remains circular, on average both its radius R and the total area A decrease monotonically
but very slowly in time t, as shown in Fig. 4. The system size for the results shown in Fig. 4 is Nx � Ny ¼ 1312,
the initial radius R0 ¼ 19:8, the number of marker points is N = 155, the viscosity m ¼ 0:0035, and the surface
tension r ¼ 0:04 (Oh ¼ 1=360). With these parameters, the radius R decreases about 0.15% during 104 itera-
tions, while the area A decreases about 0.32%, shown as solid lines in Fig. 4. The reason for R and A to vary is
that the LBE method only conserves the fluid masses over the entire system, but not the fluid masses or vol-
umes within and without the interface individually. The rates of variation of the bubble radius R and area A

depend on the number n, i.e., the way the capillary force is distributed, but independent of the viscosity m. It
12 13 14 15 16 17 18

0

0.5

1

n=2
n=3

The normalized pressure �pðrÞ across the interface for a bubble in a quiescent flow. The initial radius R0 ¼ 15:2, indicated by the
l line. The viscosity m ¼ 0:001, and the surface tension r ¼ 0:022 (Oh ¼ 0:001223). The measurements are obtained after 1000
ns.
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Fig. 4. The time-dependence of (a) the circumference 2pR and (b) the total area A ¼ pR2 of a bubble in quiescent flow. The initial radius
R0 ¼ 19:8, Nx � Ny ¼ 1312, the viscosity m ¼ 0:0035, the surface tension r ¼ 0:04, and n = 2.
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should also be noted that the changes in R and A are so little that they are negligible per time step (about
10�5%).

The variations in R and A can be reduced by a very simple prediction–correction scheme as the following:
Fig. 5
magnifi
spurio
the we
f 	0 ðtnÞ ¼ f0ðtnÞ � #½AðtnÞ � Aðtn�1Þ�; ð11Þ

where the parameter # > 0 is determined empirically. The above correction scheme is applied to all nodes
within the interface region. Obviously, when the bubble is shrinking, the above correction scheme adds mass
(with zero particle velocity) uniformly inside the interface and this increases the pressure p inside the bubble to
counter-act the shrinking. With # ¼ 4:0, the variations of R and A are shown as dashed lines in Fig. 4. The
rates of change in R and A are reduced by a factor of about 4.0.

Observed in many surface tension simulation methods, spurious currents are vortices in the neighborhood
of interfaces despite the absence of any external forcing [30,37], which were first discovered in the lattice Boltz-
mann method [31]. Spurious currents are due to discretization errors and have been investigated in some
recent studies [32–37]. Fig. 5 shows the vector field and the magnitude contour of the spurious current,
corresponding to the case of Fig. 4. It is interesting to note that, near the interface, spurious currents are
70 80 90 100

70

80

90

100

. The spurious velocity field corresponding the simulation of Fig. 4. The (red) solid line indicates the interface location. The
ed spurious velocity vector field (left) and the magnitude contours of spurious velocity (right). The maximum magnitude of the

us current is U spurious � 1:02� 10�3. (For interpretation of the references in colour in this figure legend, the reader is referred to
b version of this article.)
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tangential to the interface, indicating the absence of radial component of the spurious forcing. This explains
why the bubble is rather stable in its size and shape.

Although the amplitude of the spurious currents fluctuates in time, it is observed in other methods that its
averaged maximum value scales approximately with the ratio r=m for large m [37], that is, the capillary number
based on the maximum spurious velocity Uspurious, Cas :¼ U spuriousm=r, is a constant. For a bubble of radius 30,
the maximum of Cas ’ 7:0� 10�5, which is smaller than for standard VOF techniques [38] and existing LBE
models [39], but not as small as observed in some more sophisticated techniques [37,40]. We find that the
amplitude of the spurious currents depends very little on the Ohnesorge number Oh when
0:004 6 Oh 6 0:02. The spurious currents may be originated from two major sources: the simple ‘‘smearing’’
function and the anisotropy in small scales close to grid spacing. In the grid scale, the LBE model has the spu-
rious invariance of checker-board pattern [21,41], which may affect the spurious current.

If we simulate a bubble in the flow of a uniform velocity, we find similar results as in the quiescent flow. The
bubble is indeed advected with the mean flow velocity. Therefore the model is satisfactory in terms of global
advection. The residual spurious currents are somewhat smaller than that observed in the quiescent flow.

3.2. Capillary waves

To understand the dynamic behavior of the model, we use the LBE front-tracking scheme to simulate cap-
illary waves between two fluids of equal densities and viscosities. The system is a rectangular domain of size
Nx � Ny with periodic boundary conditions along the x-direction and the no-slip boundary conditions at y = 1
and y ¼ N y , which are realized by using the bounce-back schemes. The fluids with uniform density q = 1 are
quiescent initially. The markers xi ¼ ðxi; yiÞ are uniformly distributed on a sinusoidal curve
Fig. 6
vðyiÞ=U
yi ¼
1

2
ð1þ NyÞ þ Y 0 cosðkxiÞ; k ¼ 2pkx=N x; kx ¼ integer: ð12Þ
The N segments connecting markers are such that they satisfy periodic boundary conditions along x axis.
For given viscosity m, surface tension r and k ¼ 2p=N x, the dimensionless frequency x0, the dissipation e0,

and the Ohnesorge number Oh of the system are
x0 ¼

ffiffiffiffiffiffiffi
rk3

2q

s
; e0 ¼

mk2

x0

; Oh ¼ m

ffiffiffiffiffiffiffiffi
q

rNx

r
¼ e0

2
ffiffiffi
p
p ; ð13Þ
where q = 1. We will conduct simulations with various values of Oh.
We first show in Fig. 6 the evolution of the velocity field u ¼ ðu; vÞ along a vertical cut for the 2D capillary

wave. The parameters are: Nx � N y ¼ 151� 361, m ¼ 0:0045 and r ¼ 0:045. The attenuation rate c � 3:30�
-1 -0.5 0 0.5 1
100

150
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250

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
100

150

200

250

. Evolution of the velocity field. (a) x-component (tangential) velocity uðyiÞ=U 0 and (b) y-component (perpendicular) velocity

0, U 0 � 1:237� 10�3. Other parameters are: Nx � Ny ¼ 151� 361, m ¼ 0:0045 and r ¼ 0:045.
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10�5 and the period T � 5106dt. We measure the velocity at x ¼ 3ðNx þ 1Þ=4 ¼ 114. Figs. 6a and 6b show the
dynamics of the tangential velocity uðyiÞ=U 0 and transverse velocity vðyiÞ=U 0, respectively, where
U 0 � 1:237� 10�3c is the maximum value of juðyiÞj at t ¼ 500dt. It is clear that the tangential velocity uðyiÞ
is continuous across the interface.

We next study the dependence of the period T and the attenuation rate c on the viscosity m and the grid size
Nx. We use Ny ¼ 171, kx ¼ 1, and Y 0 ¼ 1:5 unless otherwise stated. We use a sufficiently large system size to
minimize the boundary effect on the oscillation frequency x and the finite-size effect on the attenuation of the
capillary wave. Other parameters used in the following simulations are: the surface tension r ¼ 0:065 and the
bulk viscosity f ¼ 0:1. In principle, the bulk viscosity f plays very little role, if any, in the capillary wave phe-
nomenon, we choose a fairly large value (f ¼ 0:1) so that the density fluctuations due to inconsistent initial
conditions in the simulation can be quickly dissipated. We use m ¼ 0:0025, 0.0035, 0.0045, 0.0055 and
0.0065, N x ¼ 65, 81, 101, 111, 131 and 151, and k ¼ 2p=Nx, corresponding to 0:8� 10�3

6 Oh 6 3:2� 10�3.
For the force distribution, we use n = 2 and 3, unless otherwise stated. Eq. (9) with n = 2 is also used to

evaluate the velocity field at the marker points from their neighboring Eulerian grid points, and this is equiv-
alent to second-order interpolations.

Starting from a quiescent fluid with markers distributed on the sinusoidal interface defined by Eq. (12), we
compute the time evolution of the normalized wave amplitude
Fig. 7.
r ¼ 0:0
�yðtnÞ :¼ 1

�y0

X
i

yiðtnÞ cosðkxiÞ; �y0 :¼
X

i

yið0Þ cosðkxiÞ: ð14Þ
Based on the extended normal mode solutions of surface waves [42–44], the amplitude of the capillary wave
evolves as cosðxtÞ expð�ctÞ, where x is the frequency and c is the attenuation rate, obtained from the solution
of the dispersion equation. Fig. 7 shows the evolution of �yðtnÞ in a typical simulation. The data shown in Fig. 7
is used to compute the period T ¼ 2p=x and the attenuation rate c of the capillary wave.

Fig. 8 shows the dependence of the attenuation rate c and the period T on the viscosity m, with different
resolution Nx for one wavelength. The theoretical values of c and T are obtained by formulas given in
[43,44], where the densities and viscosities of fluid I and fluid II are equal. We observe that both the attenu-
ation rate c and the period T monotonically depend on the viscosity m, although the viscosity dependence of T

is very weak. We also observe that the numerical values of c are always smaller than the theoretical ones, while
the numerical values of the period T are always (slightly) larger.

We further study the convergence behavior of c and T. We compute the absolute (Dc) and the relative (D�c)
errors
Dc ¼ jc� c0j; D�c ¼ Dc
c0

; ð15Þ
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Evolution of the capillary wave amplitude normalized by its initial value. Parameters are: Nx ¼ 81, kx ¼ 1, Y 0 ¼ 1:5, m ¼ 0:045 and
65.
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where c0 is obtained from dispersion relation [43,44]. Fig. 9 shows both the absolute and relative errors of c,
with dependence on the viscosity m and the parameter n = 2 and 3. For the attenuation rate c, the computed
rates of convergence are about 2.8 and 1.0 for the absolute and the relative errors, respectively.

Fig. 10 shows the relative error DT of the period T
Fig. 9.
and th
and 3,
DT ¼ jT � T 0j; DT ¼ DT
T 0

; ð16Þ
where T0 is obtained from the normal-mode analysis [43,44]. The rate of convergence computed from the data
is about 1.5.

To further validate the LBE-FT method, we will compare the LBE-FT solution with Prosperetti’s initial-
value solution for the amplitude of the capillary wave [45] in which we have set that the two fluids on either
side of the boundary have the same density and viscosity. For a system of size N x � Ny , we use Ny ¼ 1:6Nx to
ensure that the boundary effect is negligible. The initial conditions are that of a quiescent flow with markers
uniformly distributed on the sinusoidal interface defined by Eq. (12), as in the previous tests. The surface ten-
sion is fixed at r ¼ 0:04. For each run with fixed parameters, we carry out a number of iterations N t ¼ 4p=x0.
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We use the time series of the normalized wave amplitude �yðtnÞ to compute the surface tension r and the dis-
sipation e by using the least-square fitting with Prosperetti’s solution for the wave amplitude [45]. We then
obtain the relative errors of r and e depending on the resolution Nx and the dissipation e0. We also compute
the root-mean-square (RMS) error for the wave amplitude
Fig. 11
distrib
E2ð�yÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t0

Z t0

0

j�yðtÞ � �y	ðtÞj2 dt

s
; ð17Þ
where t0 ¼ Ntx0 ¼ 4p � 12:566 and �y	ðtÞ is Prosperetti’s solution. Both �yðtÞ and �y	ðtÞ are so normalized that
�yð0Þ ¼ �y	ð0Þ ¼ 1, as indicated in Eq. (14).

Fig. 11 shows the convergence in r and e. Clearly, both r and e obtained by the LBE-FT method converges
to Prosperetti’s solution. Also, the convergence in r and e is insensitive to the dissipation e. We show the LBE-
FT solution �yðtnÞ for the wave amplitude with N x ¼ 48 and 158 along with Prosperetti’s solution �y	ðtnÞ in
Fig. 12a. In Fig. 12b we show the RMS error E2ð�yÞ with several values of e0. Clearly, the wave amplitude �y
also converges to Prosperetti’s solution, and the rate of convergence seems to be insensitive to the value of e.

To compare our results with the existing data [33,37], we simulate the capillary wave with Oh ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
3000
p

.
The parameters used the simulations are: the surface tension r ¼ 0:04, the time for averaging t0 ¼ 8p � 25:13,
and the ‘‘smearing’’ range n = 2 and 3. The interpolations for the velocity field u involve the nine-point stencil
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based on the D2Q9 model (cf. Appendix C in [23]). We test two types of boundary conditions in the y-direc-
tion: the periodic and the free-slip boundary conditions. For the free-slip boundary conditions, particles
reverse their momenta normal to the boundary, while maintaining their momenta tangential to the boundary.
We use squares of Nx � Ny ¼ Nx � N x and rectangles of N x � Ny ¼ Nx � 2Nx with N x ¼ 8, 16, 32, and 64 as the
computational domain. Table 1 compiles the results for the time averaged L2-normed error of wave amplitude
E2ð�yÞ with respect to Prosperetti’s solution. FT and PROST in Table 1 are the results from [33,37], respec-
tively. Our observations are the following. First of all, in all cases the error E2ð�yÞ has a second-order rate
of convergence. Second, the larger the ‘‘smearing’’ range n, the smaller the error. This is true except for some
cases of Nx ¼ 8. And third, for the free-slip boundary conditions, the error E2ð�yÞ is systematically decreasing
faster with the rectangular domain than the square one as the mesh size increases, while for the periodic
boundary conditions, the error with the rectangular domain is slightly larger than that with the square
domain. In general, our results agree with the previous ones [33,37].

The above comparisons of the LBE-FT solution with the normal mode solution of the dispersion equation
and Prosperetti’s initial-value solution [45] lead to the following observation. The numerical results of the per-
iod T (or frequency x), the attenuation rate c, the surface tension r and the time-averaged L2 error of the wave
amplitude agree well with the normal mode and Prosperetti’s solutions. The values of Oh in this set of simu-
lations are 1:41� 10�2

6 Oh 6 5:64� 10�2. Note that these values of Oh (more than an order of magnitude
larger than for the normal-mode test) were chosen to increase the contribution of transients at small times.
Our results of Figs. 11 and 12b clearly indicate that the convergence rate of the LBE-FT method is of sec-
ond-order. It is interesting to note that the front-tracking with a Navier–Stokes solver [37] did not achieve
Table 1
Convergence of the time averaged L2-normed error of wave amplitude E2ð�yÞ with respect to Prosperetti’s solution

Nx � Ny Periodic BCs Free-slip BCs VOF

n = 2 n = 3 n = 2 n = 3 FT PROST

8 · 8 0.30108 0.30149 0.29030 0.28927 0.2972 0.2960
16 · 16 0.08515 0.07920 0.09285 0.08688 0.0778 0.0818
32 · 32 0.02444 0.02166 0.03075 0.02807 0.0131 0.0069
64 · 64 0.00818 0.00744 0.01247 0.01173 0.0098 0.0018
8 · 16 0.28637 0.28651 0.28636 0.28650

16 · 32 0.08821 0.08227 0.08823 0.08228
32 · 64 0.02656 0.02382 0.02657 0.02383
64 · 128 0.00834 0.00751 0.00835 0.00752

The time average is over t0 ¼ 8p � 25:13, the surface tension r ¼ 0:04, Oh ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
3000
p

, the dissipation e ¼ 2
ffiffiffi
p
p

Oh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=750

p
, and n is the

‘‘smearing’’ range in Eq. (9). FT and PROST are the results from [37,33], respectively.
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a second-order rate of convergence. The rate of convergence of the LBE-FT method seems to be insensitive to
the ‘‘smearing’’ range of the interface force (we used n = 2 and 3 in Eq. (9)) and the order of interpolations to
evaluate velocity field on marker points (we use both first- and second-order interpolations).

While Prosperetti’s initial-value solution [45] can help to initialize flow fields more accurately for the cap-
illary wave problem (cf. [37]), we ensure that the effect due to inconsistent initial conditions is quickly dissi-
pated, due to the value of f chosen here. To estimate the effect due to inconsistent initial conditions, we
compare the period T and the attenuation rate c obtained from both normal-mode [43] and Prosperetti’s solu-
tions with the parameters corresponding to our simulations within one period of oscillation. The differences
between the results obtained from these two methods are only in the order of 1/1000, for a range of parameters
corresponding to 0:0007 6 Oh 6 0:004. The difference between the two results diminishes rapidly as the inter-
val of time within which the comparison is made increases. Therefore, the systematic error due to inconsistent
initial conditions is rather small for the cases studied here. The compressibility in the LBE method may be
another source of error pertinent to this test. A systematic error analysis shall be carried in our future study.

3.3. A comparison of MRT-FT and LBGK diffusive interface methods

The proposed LBE front-tracking method differs from the existing multiphase lattice BGK diffusive inter-
face capturing method in several aspects. The density difference in the front-tracking method is maintained
mechanically by the surface tension, while in the multiphase LBE method it is due to a non-ideal gas equation
of state, which usually does not consider the surface tension explicitly. In the multiphase LBE method, the
surface tension is a numerical artifact which is difficult to control independently [28]. In what follows, we will
provide a comparison between the proposed LBE-FT method and the existing multiphase LBGK interface
capturing schemes.

First of all, the MRT collision model can significantly improve numerical stability (e.g. [46]). With a non-
zero mean flow velocity, we can show that the MRT-LBE is more stable than the corresponding LBGK equa-
tion. As an example, we use a bubble of radius 10:2dx and r ¼ 0:2 in a system of size Nx � N y ¼ 519� 101 and
with periodic boundary conditions in both directions. The flow is initialized with a uniform velocity Ux ¼ 0:2c
along the x-axis. When the viscosity m 6 0:006, the LBGK equation diverges after a number of iterations, as
shown in Table 2, whereas the MRT-LBE is stable in all these cases and beyond. The relaxation rates in the
MRT-LBE are: s2 ¼ 1:3, s3 ¼ 1:4, and s4 ¼ s5 ¼ 1:9. After 2000 iterations, the MRT-LBE yields the result that
the bubble has been advected by a distance of about 402dx along the x direction, which is about 0.5% off the
distance based on the uniform advection velocity Ux. This clearly demonstrates the superiority of the MRT-
LBE over the LBGK equation in terms of numerical stability [21].

The most important distinction between front-tracking and diffusive interface capturing is, of course, the
treatment of the interface. In the front-tracking method, interfacial locations are tracked by a set of
Lagrangian marker points from which the interfacial forces are evaluated, while in the diffusive interface
capturing method, interfacial locations are somewhat arbitrarily defined by the contours of some continuous
function which has to be computed throughout the entire domain. This has some important ramifications.
First of all, the computational efficiency of these two methods is quite different. We will use the single bub-
ble problem as an example. We use a system of size N x � N y ¼ 1912 with a bubble of radius R0 ¼ 20dx

located in the center of the domain. We compare the proposed MRT-FT method with the multiphase lattice
BGK method as described in [29], which is an improved version of the interaction model [15]. The multi-
phase LBGK model [29] uses the van der Waals equation of state: p0 ¼ ql0 � E0, where l0 = oE0/oq and
E0 ¼ qRT ln½q=ð1� bqÞ� � aq2, with a ¼ 9=49, b ¼ 2=21, and RT ¼ 0:56. The interface force is given by
Table
The vi

m
Iteratio

The su
F ¼ c2
s $q� q$ðl0 � jr2qÞ;
2
scosity dependence of the number of iterations before the LBGK equation diverges for a bubble in a uniform velocity Ux ¼ 0:2c

0.0020 0.0040 0.0045 0.0050 0.0055 0.0060
ns 1 560 685 890 1165 1565

rface tension r ¼ 0:2 and the bubble radius R0 ¼ 10:2dx, and 0:001 6 Oh 6 0:003.
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where j ¼ 0:037 and the gradient $ and the Laplacian $2 are discretized with the stencils to reduce spurious
currents [29]. With the system size of 1912, the MRT-FT code is more than 4 times faster than the multiphase
LBGK code per time step. The reason is simple. While a bare-bone MRT-LBE code (without front-tracking
part) is about 20% slower than the corresponding bare-bone LBGK code, the interface tracking is carried out
only in the interface region, which is a small fraction of the entire domain and adds less than 10% in terms of
the CPU time in this case. Therefore, the MRT-FT code takes about 30% more CPU time than a bare-bone
LBGK code in this case. For the multiphase LBGK method, the interface force has to be computed indiscrim-
inately throughout the entire domain which becomes a significant part of the calculation. This alone leads to
the factor of 4 in favor of the MRT-FT method for this particular test case.

The initialization is another problem which deserves our attention. For the MRT-FT method, the surface
tension r and the bubble radius R can be easily specified a priori and arbitrarily in a continuous range allowed
by the stability of the method. The density profile across interface can develop quickly after a small number of
iterations. Because the initial interface density profile cannot be specified exactly, the density relaxation due to
inconsistent initial conditions generates acoustic waves in the system, which decay as e�ðm=2þfÞk2t, where
k ¼ 2p=N x. To accelerate this initial density relaxation, we can use the absorbing boundary conditions instead
of the periodic boundary conditions, which simply make the distribution functions {fi} entering the compu-
tational domain equal at the last two adjacent lines at the boundaries, i.e.,
Fig. 13
s2 ¼ 1:
period
line) w
fiðNx; yjÞ ¼ fiðN x � 1; yjÞ; f ið1; yjÞ ¼ fið2; yjÞ 8yj; ci � n̂ < 0;

fiðxi;N yÞ ¼ fiðxi;N y � 1Þ; f iðxi; 1Þ ¼ fiðxi; 2Þ 8xi; ci � n̂ < 0;
where n̂ is the unit vector out-normal to the boundaries. The absorbing boundary conditions can quickly dis-
sipate the acoustic waves due to the inaccurate initial conditions, as shown in Fig. 13a.

In Fig. 13a we show the time series of the following normalized pressure difference
d�p :¼ ð�p1 � �p2ÞR0=r0;
where �p1 is the pressure averaged over a co-centric disc of radius r 6 10dx inside the bubble and r is the dis-
tance to the bubble center, �p2 is averaged over a co-centric ring of 30dx 6 r 6 40dx outside of the bubble, and
R0 and r0 are the initial bubble radius and surface tension, respectively. If the MRT-FT method is consistent
with Laplace’s law with the given R0 and r0, then d�p should converges to unity after the initial relaxation and
this is indeed the case. The magnitude of the acoustic waves generated by the initial layer is less than 1% after a
few iterations. With the absorbing boundary conditions, it completely disappears after about 200 iterations.
We also compute d�p for the multiphase LBGK method with an estimated r0 � 0:041 based on R0 ¼ 20dx. Be-
cause the multiphase LBGK method has a much thicker interface region, �p2 is averaged over a co-centric ring
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of 50dx 6 r 6 60dx, which is sufficiently away from the interface region. The results are shown in Fig. 13b
along with the MRT-FT result with the periodic boundary conditions. Obviously, the multiphase LBGK re-
sult has not reached the final steady state after 5000 iterations. A conservative estimate indicates that it would
take about 106 iterations for the multiphase LBGK result to converge [29], while the MRT-FT result con-
verges after less than 104 iterations with the periodic boundary conditions. Thus, in terms of the number of
iterations to achieve the steady state, there is at least two orders of magnitude difference between the
MRT-FT method and the multiphase LBGK method for this simple test.

We next show the normalized density profiles of the two methods in Fig. 14
Fig. 14
(dashe
�qðrÞ ¼ qðrÞ � q1

q2 � q1

; ð18Þ
where q2 and q1 are the densities inside and outside to the bubble, respectively. Fig. 14 shows the density
profiles across the interface region along the x-axis after 5000 iterations. For the MRT-FT method, the inter-
face region covers precisely 5 grid point, that is, the interface thickness is 4dx, determined by n = 2 in the
interface forcing ‘‘smearing’’ function of Eq. (9). The interface location varies in the order of 10�5% per time
step (cf. Fig. 4 and the related discussions). In contrast, for the multiphase LBGK method [29], the interface
thickness is about 15dx. Because the interface position in the multiphase LBGK method has to be determined
from the contours of the density �qðrÞ, the precision of determining the interface position would largely depend
on the numerical procedure used. Given the fact that the interface thickness is about 15dx, which is comparable
to the bubble radius R0 ¼ 20dx, one cannot expect to determine the bubble radius to such a precision compa-
rable to what the MRT-FT method can do, i.e., smaller than 10�5dx per time step. As an alternative, we deter-
mine the variation of the bubble radius as follows. Based on Laplace’s law, we compute RðtÞ ¼ ½�p2ðtÞ � �p1ðtÞ�r0

and its relative variation with respect to time t, which is about 5:2� 10�3% per time step after 5000 itera-
tions—more than two orders of magnitude larger than that observed in the MRT-FT results. We have also
tested the original multiphase LBGK scheme [15], which has a thicker interface region of about 17dx and can-
not sustain a bubble of R ¼ 20dx with a system of size 1912. The smallest bubble we can obtained with the
original Shan–Chen multiphase LBGK scheme [15] is about R � 67dx.

The comparison we have shown above leads to the following observations. The proposed MRT-FT method
is superior to the existing multiphase LBGK diffusive interface capturing method in three aspects: accuracy of
interface representation, numerical stability, and computational efficiency. If the BGK collision model is
replaced by the MRT one in the LBE diffusive interface capturing method, the numerical stability can be sig-
nificantly improved (e.g. [46]). However, the MRT collision model alone would not improve the accuracy of
interface representation and computational efficiency of the multiphase LBE diffusive interface capturing
method, which are determined by the inherent properties of the diffusive interface method. It should also
be emphasized that all the advantages of the MRT-FT method are achieved without sacrificing the simplicity
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of the lattice Boltzmann method, provided that interface geometry is trackable. In addition, the LBE-FT
method with MRT collision model has the freedom to independently adjust the surface tension, the transport
coefficients and the speed of sound, which is denied to the lattice BGK models.
4. Conclusions

In this work we demonstrate the feasibility of combining the lattice Boltzmann equation for flows and
front-tracking technique for modeling and simulation of interfacial dynamics with surface tension in two
dimensions. The proposed LBE-FT method is verified by the simulations of a single bubble in quiescent or
moving flows and the oscillating capillary wave between the interface of two fluids of equal viscosities and
densities. For the single bubble simulations, we measure the spurious currents in the interface region and find
the strength of spurious currents is weaker than that found in the standard VOF method and existing LBE
models for multiphase fluids. For the capillary wave simulations, we observe that the period T (or the fre-
quency x), the dissipation rate c or e, the surface tension r and the RMS error of the wave amplitude all agree
well with the normal-mode and Prosperetti’s solutions, and the convergence rate of the LBE-FT method is of
second order, which is difficult to achieve some the conventional front-tracking methods [37].

The proposed LBE-FT method maintains the simplicity of the LBE method. In addition, it has several
advantages over the existing multiphase LBE diffusive interface method. First, because of the front-tracking
method, the interface location is precisely represented. This is the distinctive feature of the front-tracking
method as opposed to diffusive interface methods. The interface for the LBE-FT method is much thinner than
what is observed in the multiphase LBE diffusive interface method. Second, the proposed LBE-FT method
uses the LBE with multiple-relaxation-times (MRT), therefore it is more stable than the existing lattice
BGK method [21,39]. Third, the LBE-FT method is much more computationally efficient than the multiphase
LBGK diffusive interface method. Fourth, the strength of the spurious currents observed in the LBE-FT sim-
ulations is much weaker than that observed in the existing multiphase LBE models, although we note that the
spurious currents can be reduced by other means, such as including more discrete velocities [35], using a dif-
ference equation of state [36] or a consistent discretization of the interaction [29]. Fifth, the LBE-FT method
can maintain the density difference that varies very slowly in time, which is much more difficult to attain for
the existing multiphase LBE method [28,39]. And sixth, the surface tension and other transport coefficient are
independently adjustable parameters in the MRT-LBE model, whereas it is not possible for some LBGK mod-
els (e.g. [15,16]) to decouple the surface tension from the viscous effect.

We note that the LBE-FT method can be readily extended to 3D, the main difficulty in 3D being the tri-
angulation to represent the interface [7,8]. The ‘‘smearing’’ function to distribute the localized capillary forces
can also be easily extended to 3D. Our further research activity will include investigations of the cause of spu-
rious currents and effective and efficient ways to reduce or eliminate them, incorporation of matured and
sophisticated numerical techniques, such as the multigrid or implicit time stepping method, into the LBE
method. A flow-dependent viscosity in the spirit of LES is also under consideration. These techniques will help
to increase the density difference across interfaces, for example.
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